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The problem of allowing for the kinetics of mass transfer in porous solids in the presenta- 
tion of certain conjugate problems is considered, 

It is well known that conjugate hea t - t r ans fe r  problems [1] involve the simultaneous solution of the 
heat-conduct ion equations for the solid and the liquid flowing around it (the velocity distr ibution in the 
liquid is de termined by solving the corresponding hydrodynamic problem),  i . e . ,  the t empera tu re  or the r -  
mal flux at the solid/ l iquid interface is not specified in advance but determined f rom the solution of the 
problem.  This approach is more  co r r ec t  for t ransient  and high-intensi ty  heat t r ans fe r  [2]. It is a char -  
ac te r i s t i c  feature that in this case the solution depends on the proper t ies  of both the liquid and the solid 
around which it is flowing. 

In a number of cases  involving gas flow around a solid it is in teres t ing to study heat t r a n s f e r  under 
conditions in which phase or chemical  t r ans format ions  a re  taking place on the solid surface (especially in 
sublimation or the combustion of the ~al l  material) ,  or in which some substance differing f rom the main 
gas flow passes  through a porous sur face  (in the presence  of deep evaporat ion zones in cap i l l a ry-porous  
solids).  Such problems a re  general ly  considered as conjugate with respec t  to heat t rans fe r ,  i . e . ,  the 
equations of the boundary layer  in the gas and the heat-conduction equation in the solid a re  solved s imul -  
taneously [3-5]. However, the m a s s - t r a n s f e r  equation in the solid is usually absent,  and the m a s s - t r a n s -  
fer condition is specified at the gas / so l id  interface (for example, the condition of equil ibrium or  nonequilib- 
r i um evaporation).  

In this ar t ic le  (which is based on investigations ca r r i ed  out in the Mathematical  T ranspor t  Theory  
Labora tory ,  Institute of Heat and Mass Trans fe r ,  Academy of Sciences of the Beloruss ian  SSR) we shall 
show that in cer ta in  cases ,  when formulating such conjugate problems for both polycrysta l l ine  and capil-  
l a ry -po rous  solids,  it is essent ial  to consider  the m a s s - t r a n s f e r  equation and a lso  to allow for the kinet- 
ics of t r ans f e r  p r o c e s s e s  inside the solid. 

I. During the h igh- tempera ture  reac t ion  of carbon on a solid surface  the density of the sample was 
found to a l ter  [6, 7]. The authors in question attributed this effect to the existence of a substantial  sol id-  
phase diffusion of a toms f rom the in ter ior  of the solid to its surface.  The atoms f rom inside the solid 
tended to occupy the vacancies  formed in the lattice at the surface  as a resul t  of the react ion,  so that the 
vacancies  in effect diffused into the in te r io r .  

A cer ta in  mathematical  model was employed in [8] in an attempt to d iscover  the conditions under 
which a substantial  contribution might be made by the diffusive flow of atoms (vacancies) through the solid 
to the loosening of the s t ruc ture  in the p resence  of a sur face  reaction.  The boundary condition for the 
vacancy diffusion equation allows for the fact that,  in addition to ordinary  evaporat ion,  which cor responds  
to the complete removal  of a sur face  a tom f rom the c rys ta l ,  incomplete evaporat ion p roces se s  have to be 
taken into considerat ion [9]. Atoms diffusing f rom the inside of the solid replace  vacancies  formed on the 
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surface ,  and the velocity of the reac t ion  front diminishes.  The vacancy diffusion equation and boundary 
condition take the form 

Dv d2c c - -  c o (1.1) 
dx ~ x 1 

= D  dc 
rz o (c - -  c~) -  v~ v-d~xd (~=o)" (1.2) 

It follows f rom the solution to the diffusion equation (1.1) that cases  may a r i se  in which the velocity 
of the reac t ion  front tends to zero,  and the mater ia l  loses mass  f rom inside by the diffusion of the solid 
a toms to the sur face .  This a r i se s ,  in par t icu lar ,  as a resu l t  of the fact that rea l  c rys ta l s  have paths of 
easy diffusion, associa ted  with the development of networks of boundaries between various elements of 
the i r  s t ruc ture ,  including mic roc racks  and pores ,  these defects being linked to the outer surface by way 
of microcapi l la r ies  [7, 10, 11]. We thus have to consider  the boundary problem of the loosening of a solid, 
i . e . ,  the change in its density with t ime.  The express ion  for the density of the diffusive flow of atoms 
has to include a t e r m  allowing for the dependence of the mobility of the a toms on the vacancy concent ra-  
t ion [9, 12]. The approximate solution given in [13] for the loosening of mater ia l  yields qualitative ag ree -  
ment between the calculated surface  density and experimental  measurements  [6]. 

Thus, a considerat ion of the vacancy kinetics within the f ramework  of the model employed enables us 
to make a co r r ec t  presenta t ion of the problem both for the diffusion (mass t ransfer )  equation and for the 

e n e r g y  equation in the solid [14] in the p resence  of a surface  react ion.  

II. Now let us consider  some quest ions relat ing to the t r ans fe r  kinetics of mois ture  in vapor form 
inside a capi l la ry-porous  solid in the presence  of a deep evaporat ion zone. 

1. As a l ready noted, in cer ta in  cases  surface  diffusion has a considerable influence on t r ans fe r  
p roces se s  in porous solids.  Experimental  investigations into the flow of gases  in capil laries under f ree-  
molecular  conditions reveal  a marked difference between the measured  conductivity and that calculated by 
the Knudsen formula.  One of the reasons  for this difference is surface diffusion [15, 16]. The f r e e - m o l e c -  
u lar  flow of a vapor (with due allowance for surface  diffusion) in a cyl indrical  capi l lary of radius I1 bounded 
on one side (X = 0) by the plane surface  of the evaporating liquid and connected to a r e s e r v o i r  filled with 
vapor  of the same liquid on the other (X = L), may be given an approximate  analytical  descr ip t ion by means 
of the following integrodifferential  equation for the surface  density of the adsorbed molecules nad as a .func- 
t ion of the dimensionless  coordinate x = X / L  [11]: 

I"  'aanad ~ , , 1 / 
'EL ~ ~ = na~ t (X)=- o 

�9 +aKii@ ~ g)l a~ -:- NI'~K ix) .  N,x [K (1 - -  x) - -  ~zg (1 + x)], 

where r is the adsorpt ion t ime;  

(2 .1 )  

E = (1/rDs),  ~ = L/R,  a is the specular  ref lect ion coefficient of the liquid 

surface,  

12x ~ + 2 l x,  KI" (x) = d K  (x) 
K (x) = 2 (l~x z + 4) 1/~ -2- - -  dx ; (2.2) 

N i = ( 1 - - a )  Pl , N~ 
( 2umkT)  l/2 

are ,  respect ively ,  the flows of molecules diffusely emitted by unit a rea  of the liquid meniscus and mole-  
cules passing through unit a rea  of the open end f rom the r e s e r v o i r .  

The boundary conditions have the form [11,171 

dnad = L V ' ~ .  (head-- had); head:  N2T, (2.3) 
dx 

had(0) = no" (2 .4 )  

It follows f rom Eq. (2.1) that, on the one hand, the g rea t e r  the dimensionless  pa rame te r  G L = 1 / E L  2, 
the more  significant is the role  of surface  diffusion in the dis tr ibut ion of nad over the sur face  of the capil-  
la ry .  On the other hand, if G L << 1 Eq. (2.1) has a smal l  pa r ame te r  at tached to the leading derivat ive.  
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Hence,  for  a r b i t r a r i l y  sma l l  values  of GL regions  (boundary l aye r s )  usual ly  exis t  at the ends of the capi l -  
l a ry  in which it is e s sen t i a l  to al low for  the d i f ferent ia l  t e r m  in (2.1). In o rde r  to obtain an  approx ima te  
analy t ica l  solution for  the p r o b l e m  (2.1)-(2.4) the kerne l  was rep laced  by the exponential  (1/2) exp {-- /x} 
[181. 

The resu l t ing  flow of molecu les  at the exit  f r o m  the cap i l l a ry  equals  the sum of the su r face  diffusion 
flow Ns (1)and the flow of molecules  N0(1) escaping  through the open end of the cap i l l a ry :  

N (I) = N~ (1) + No(1), (2.5) 

where  

2:~R D~ dn~ad 
N~ (1) = 2~RJ, (1) = -Z- -  - - d ~ '  

I 

N O (1) = n R 2 {N~K~ (I) - -  N2 [I - -  aK~ (2)]} + 2uR:n~ ~ had (x)[K (1 - -  x) + aK (l + x)] dx, 
o J 

dK2 (x) =- -2 lK  (x). 
dx 

(2.6) 

(2.7) 

Here we must remember that in (2.5) for G R = (1/ER 2) << ! N s << N0and for G R >> i N s -z N 0, i .e. ,  

G R c h a r a c t e r i z e s  the r a t i o  of the conduct ivi t ies  due to su r f ace  and Knudsen diffusion. It should be noted 
that ,  when the gas  flow p a s s e s  around the cap i l l a ry -po rous  solid as  a whole, the vapor  p r e s s u r e  of the 
evapora t ing  liquid P2 at  the su r f ace  of the solid is an  unknown quantity enter ing into N2. Thus we have to 
so lve  the diffusion equation in the boundary  l ayer  and Eq. (2.1) s imul taneous ly .  

The  non i so thermal  case  was cons idered  in [19]. 

2. Many p r o c e s s e s  of chemica l  technology involve gas  t r a n s p o r t  in cap i l l a ry -po rous  sol ids ,  in 
which phase  t r an s fo rm a t i ons  occur  at the s ides of the pores .  A desc r ip t ion  of such p r o c e s s e s  is e spec ia l ly  
impor tan t  for eng inee r ' s  calculat ions of porous  evapora t ive  cooling and calculat ions of the t i m e  r equ i red  
for drying wet m a t e r i a l s .  Usually when using the model of cap i l l a ry  tubes  the t r a n s p o r t  of mo i s tu r e  vapor  
is calcula ted by means  of the Knudsen fo rmula  for  a capi l la ry  of infinite length (in the case  of a r a r e f i e d  
medium) or f r o m  the mutual diffusion equations for  a b inary  v a p o r - a i r  mix tu re ,  with a c o r r e c t i o n  for  the 
Stefan flux (diffusive reg ion  of m a s s  t r a n s f e r ) ,  but without allowing for  the evapora t ion  f r o m  the ce i l s  of 
the cap i l l a ry  or  deviat ions f r o m  i s o t h e r m a l  conditions [20]. An a t t empt  was made in [21, 22] to  give a 
detai led desc r ip t ion  of the t r a n s p o r t  of vapo r  for  the case  of f r ee  m o l e c u l a r  flow in a na r row cap i l l a ry  of 
length L, al lowing for  evapora t ion  not only f r o m  the meniscus  of the liquid, but a l so  f rom the s ide  of the 
cap i l l a ry  in the p r e s ence  of a t e m p e r a t u r e  gradient  along the wails of the l a t t e r .  

The number  of molecules  evapora t ing  f r o m  unit su r face  per  unit t ime  is  

pe (T) 
] (c~, 7") =~(2~mkT)i/2 , 

where  Pe is the sa tu ra ted  vapor  p r e s s u r e ,  ~ is the evapora t ion  (condensation) coeff ic ient .  Let us a s s u m e  
that  the flow of molecules  escaping  f r o m  unit s u r f a c e  contains a p ropor t ion  cr of evapora t ing  molecules  and 
a p ropor t ion  (1 - -  ~) diffusely r e f l ec ted  [23]. Then for  the flow of molecu les  escap ing  f r o m  unit l a t e ra l  
su r f ace  of the cap i l l a ry  I(x) we obtain the following equation (the flow is r e f e r r e d  to the quantity j (1, To) = 
Jo; x = X / L ) :  

i ( x ) = , s ~  + 0 - o )  r(~)K~(ix~--~i)4.+NoK(~) (2.S) 
o 

Here  the f i r s t  t e r m  d e s c r i b e s  the evapora t ing  molecu les ,  the second d e s c r i b e s  those  incident upon unit 
a r e a  of the l a t e ra l  su r face  (the in tegra l  t e rm)  and bot tom (NoK(x)), subsequent ly  being re f l ec ted  (for s i m -  
pl ic i ty  we a s s u m e  that  the ex te rna l  med ium is a vacuum):  

t 

�9 No = % + 2t (~ - -  %) f ~ (~) K(~) d~. (2.9)  
o 

If  the su r f ace  t e m p e r a t u r e  of the cap i l l a ry  v a r i e s  in accordance  with the law T (x) = ToO + Ax) and ~A t << 1, 
the p r e s s u r e  Pe may  be  wr i t t en  as fol lows: 
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Pe(x)= Bexp{--kT-~}= Bexp{-- k~o (1-- Ax)} �9 (2.10) 

Substituting (2.10) into (2.8) and once again  rep lac ing  t h e k e r n e i s  K and K~ by exponent ials ,  we obtain an 
approx ima te  ana!yt ica l  solution for  Eq. (2.8). In pa r t i cu l a r ,  for  the flow of molecules  at the outlet f r o m  
the cap i l l a ry  

I 

N~= jozR'[NoKz(1 ) + 21 ~ I (x) K (1- -x)dx]  
0 

in the pa r t i cu l a r  case  o = 1 and ~ >> s = (QA)/(kT0) we have 

/ \ S 

i . e . ,  N t ends  to  a value independent of l .  I n t h e  i so the rma l  case  (s = 0) we obtain N = j0~R 2. A s i m i l a r  
r e su l t  was explained qual i ta t ively in [24]. 

Let us de t e rmine  the d imens ion less  resu l t an t  flux of molecules  on the l a te ra l  su r face  of the capi l -  
l a ry :  

J(x) = I (x) - -  I -  (x) = ~[exp (sx) - -  l -  (x)], (2.11) 

where  I -  is the flux of molecules  fai l ing on unit l a t e ra l  su r f ace ,  which is  de te rmined  f r o m  the equation 
1 

1- (x) = j" I(~) K1 (Jx-  ~I)d~ + NoK(X). 
0 

The behav ior  of the function d(x) is  de te rmined  by the d imens ion les s  p a r a m e t e r s  s and l .  In pa r t i cu la r ,  
for  t = s and l < 1, J(0) > 0 and J(1) > 0, i . e . ,  evapora t ion  occurs  along the whole length of the capi l la ry ,  
while for  l > 1, J(0) < 0, J(1) > 0, i . e . ,  for  an inc reas ing  value of x, a t r ans i t ion  f r o m  condensat ion to 
evapora t ion  takes  place .  For  $ =  - - s  the vapor  migra t ion  m e c h a n i s m  will be di f ferent  f rom l = s .  Thus 
the d i rec t ion  of the t e m p e r a t u r e  gradient  has a cons iderab le  effect  on evapora t ion  and condensat ion p r o c -  
e s s e s  in the cap i l l a ry .  

We note that  the p r o b l e m  h e r e  cons idered  is eas i ly  genera l ized  to the ca se  in which the p r e s s u r e  of 
the  ex te rna l  med ium di f fe rs  f r o m  ze ro  (i. e . ,  when it is  not a vacuum).  Yet another  t e r m  outside the in- 
t e g r a l  then a p p e a r s  in Eq. (2.8). Once aga in  we now have  to cons ider  an  equation of type (2.8) and the s y s -  
t e m  of equations of the boundary l aye r  above the cap i l l a ry -po rous  solid at  the s a m e  t ime .  

3. Apar t  f r o m  the model  of cap i l l a ry  tubes ,  the pseudogas  model  [25, 26] is often employed in o rder  
to  de sc r i be  t r a n s f e r  p r o c e s s e s  in porous  so l ids .  In this  model  the porous  s o l i d -  gas s y s t e m  is cons idered  
as  a b inary  mix tu re  of gases ,  the molecu les  of one of these  being s t a t ionary  and having a s ize  and weight 
much g r e a t e r  than those  of the r e a l  molecu les .  

An a t tempt  was made in [27] to  de sc r ibe  the flow of gas in a highly d i spe r sed  porous  solid in the in- 
t e r m e d i a t e  p r e s s u r e  range ,  with phase  t r an s fo rma t ions  at  the pore  walls ,  the r a t io  of the th ickness  of the 
porous  l ayer  to the range  being a s s um ed  a r b i t r a r y ,  i . e . ,  in the case  under cons idera t ion  diffusion theory  
was inapplicable (the p r o b l e m  of the flow of vapor  through a d ry  l ayer  of porous  solid in which evapora t ion  
only took place  f r o m  the bot tom of the l aye r  was cons idered  in [21]). 

The probabi l i ty  that  a molecule  will  t r a v e r s e  a d i s tance  x without any col l is ions and will then coll ide 
with another  molecule  in a d i s tance  dx is  

W = e x p { - - - ~ ' }  dx 1 1 - - , I  (2.12) 

where  h i is  the f r ee  path for  the case  of a m o l e c u l e - m o l e c u l e  coll is ion,  i .e . ,  the ord inary  hydrodynamic  
f r ee  path; h 2 is the f r ee  path for  a m o l e c u l e -  " s t a t iona ry  molecule  s col l is ion.  It may  be shown that 

2 II ~ 2 =  d. 
3 1 - - I I  

Let ~l and ~2 be the number  of molecules  appear ing  in unit volume pe r  unit t i m e  as  a r e su l t  of i n t e r m o l e e -  
u i a r  col l is ions and the col l is ions of molecules  with sol id pa r t i c l e s  (including the subl imat ion  of the actual  
porous  solid).  Allowing for  (2.12) and the assumpt ions  made when der iv ing  the Pe i e r l s  in tegra l  equation 
[28], we obtain the following equat ion for  the  functions ~l and ~2: 
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L 

@~(x)=2O(0)E_~ ~-~- ~,~ i 2',  

0 

L 

0 

L 

' I" 1 (2nmkT) I/~ . ~ {1 - -o )  69~(x')E~ ( I x ~ x ' ]  dx' 

0 

(2.13) 

(2.14) 

w h e r e  Z is the  n u m b e r  of " s t a t i o n a r y  m o l e c u l e s "  in unit  vo lume ,  /3 is the  s u r f a c e  a r e a  of a " s t a t i o n a r y  
m o l e c u l e " ,  ~ is the  e va po ra t i on  coef f ic ien t ,  @ = ~I + ~2 is the  to ta l  n u m b e r  of  p a r t i c l e s  a p p e a r i n g  in unit  
vo lume ,  {~(0), {~(L) a r e  the flows of mo lecu l e s  f r o m  the s u b s t r a t e  and f r o m  the ex t e rna l  med ium,  r e s p e c -  
t ive ly .  

The  flow of m o l e c u l e s  e s c a p i n g  f r o m  the  p o r o u s  sol id  is  d e t e r m i n e d  as  fol lows : 

L 

( - ~ - )  1 fCD(x')E2 ' " ' d x ' 4  oPe(TL) (l --H).  (2.15) 

0 

On a p p r o x i m a t i n g  the ke rne l s  in Eqs .  (2.13) and (2.14) by exponent ia ls  we m a y  obtain  an  a p p r o x i m a t e  so lu -  
t i on  for  this  s y s t e m  of equat ions .  In  p a r t i c u l a r ,  i f :  

a) h I >~" h2, i . e . ,  the free-molecular mode of flow, and ~'(L) = 0. In this limiting case ~i = 0, and 

@,(x,) = alexp{cxl} + a~exp{--cxl} + ~ aPe(T~ (s ~ -  41~)Z~exp{sx,}, (2.16) 
s2--c ~ ( 2~mk To) 1/2 

and 

L x1= x - s - -  QAT 

Q is the  heat  of vapor i za t ion ,  the  coef f i c ien t s  a 1 and a 2 a r e  f r o m  the  s y s t e m  of a l g e b r a i c  equat ions  g iven  
in  [27]. 

F o r  ~ = 1 ~2 = ~Z/~Pe/(2~mkT) 1/2. In this  c a s e ,  on a l lowing for  the exponent ia l  app rox ima t ion s  of 
the  funct ions  E 2 and E3, fo r  the f low (2.15) we have 

N =  IIp~(T~ e x p { - - 2 - l }  , I Zfi~pe(To) 
(2~tm~kTo) ~/2 _ .  -;- 4 (2~rnkTo) I/2 • 

3 3Z _, 
exp - - ~ - - !  exp s §  2 / po(T L) 

• I +  2_2_ s_s_ --H)�9 (2~mkTz)i/~ . ,  
3 l 

F r o m  (2.17) fo r  the  i s o t h e r m a l  c a s e  s = 0 and on a l lowing for  Z3~\2 = 4II we ea s i l y  obta in  

(2.17). 

N ~ P~ 
(2nrnkT)t/e " 

i . e . ,  we have the  s a m e  r e s u l t  a s  f o r  the  cap i l l a ry .  

b) s = 0 and e va po ra t i on  only t akes  p lace  f r o m  the  bo t t om of the  d r y  l a y e r .  The  r e s u l t a n t  flow of 
m o l e c u l e s  at the boundary  of the  d r y  l a y e r  with the ex t e rna l  m e d i u m  then  equals  

N = 4MI~ Pe - -  P (L) 
(2~mkT) 1/2 4~ + 3L~H 

It should  be  noted that  on c o n s i d e r i n g  (2.18) as  (A/L) - -  ~ we obtain  a n  e x p r e s s i o n  for  the flow of m o l e -  
cu les  c o r r e s p o n d i n g  to  e va po ra t i on  f r o m  a f r e e  s u r f a c e ,  while  as  ( h / L )  - -  0 we have the  F ick  law for  a 
d i f fus ive  flow. 

(2.18) 
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IlI .  In conclusion, let us a s s e s s  the influence of the kinet ics  of the t r a n s f e r  p roce s s  in ce r t a in  of 
the cases  cons idered  in Sec. II onthe  motion of the evapora t ion  front  inside the porous  solid.  

It is well  known that  in automodel  Stefan p rob l ems  of the phenomenological  theory  of t r a n s f e r  in both 
solid [13] and porous  [29, 30] m a t e r i a l s  the veloci ty  of the phase  t r ans i t ion  v is propor t iona l  to l / f t .  On 
the other hand, in the case  of evapora t ion  f r o m  the f r ee  su r face  of the solid into a vacuum when the re  is 
no r e s i s t a n c e  to  m a s s  t r a n s f e r  the evapora t ion  r a t e  [9, 31] is 

Vo~ aexp {'--k~o } �9 (3.1) 

Hence when the evapora t ion  zone pene t ra t e s  deeply into cap i l l a ry -po rous  sol ids [20] we mus t  study the in-  
fluence of the t r a n s f e r  kinet ics  of the vapor  pass ing  through the d ry  l ayer  on the veloci ty  of the phase -  
t r ans i t i on  front .  

F i r s t  let us cons ider  this p rob l em  for  a s ingle m i c r o e a p i l l a r y  of radius  R and length L(t) exper iencing 
the f r e e - m o l e c u l a r  mode of flow. We shal l  cons ider  that  the t ime  requ i red  for  the molecule  to pene t ra te  
through a d is tance  L(t 1 = L / a )  is much less  than  the c h a r a c t e r i s t i c  t ime  for  the p r o g r e s s i v e  motion of the 
evapora t ion  front  (t 2 = L / v  0). For  the law of mot ion of the meniscus  in a s ingle cap i l l a ry  we may then 
wr i te  the following equation: 

L(t) 

nR ,n  dLdl -= nR*anv~ - -  2nRa  . f  I (x) K (x) dx, (3.2) 

0 

where  K(x) is the probabi l i ty  that  a molecule  f r o m  the wall  will falI  on the bot tom of the cap i l l a ry  (2.2), 
and n is the number  of pa r t i c l e s  in unit volume of the sol id .  

The r ight -hand side of (3.2) r e p r e s e n t s  the resu l t an t  flow of molecules  f r o m  the evapora t ing  su r face .  
The  function I(x) cha rac te r i z ing  the flow of pa r t i c l e s  escaping f r o m  unit l a t e ra l  su r face  of the cap i l l a ry  is 
de t e rmined  f rom (2.8). Let evapora t ion  take  place so le ly  f rom the bot tom of the capi l la ry ,  while the walls 
re f lec t  the incident molecules  diffusely.  Solving (2.8) for  cr 0 = 1, a = 0 and using the exponential  approxi -  
mat ion  for  the function (2.2), and then  subst i tut ing the solution into (3.2), we obtain 

dL v o 
, v - ~  dt 1+  --L (3.3) 

2R 
The  solution of Eq. (3.3) t akes  the f o r m  

i V  ' v~ 1 ] .  (3.4) L (t) = 2R 1 ~ R 

We see  f r o m  (3.3) and (3.4) that  for  fa i r ly  long t imes  (L >> R) v ~ 1 / ~ f t .  On the other  hand, for  L = 0 we 
obtain v = v 0. 

Now let us consider  the p r o b l e m  of the law of motion of the evapora t ion  front  in a porous  solid s i m -  
ulated by a "dus t - l aden  gas ."  On evapora t ion  into a vacuum (PL = 0) in the case  of the f r e e - m o l e c u l a r  
mode of flow, we have the following f r o m  (2.18): 

(~ = 1 ;  ~ = - -  N = IInv o 1 + - - ~  . 
�9 3 1 - -  

For  the t ime  dependence of L we then  have the equation 

whence 

L = ] / / / - - ] -  V old ( 1 - -  II) -}- d* - -  d 

9 (l--H) 
8 

It follows f r o m  (3.5) and (3.6) that  for  long t imes  (L >> d) 

(3.6) 
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Thus mass t r an s f e r  in the capi l lary  has a substantial  effect on the e~aporat ion of the liquid, i . e . ,  
the t he rma l  problem should be cons idered  using the new v(t)o 

N O T A T I O N  

c, vacancy concentration; co, equilibrium vacancy concentration; rl, relaxation time; Dv, self- 
diffusion coefficient of the ~,aeaneies; w0, vacancy mobility [9]; II, porosity of the solid; d, diameter of 
a "stationary- molecule"; a, velocity of sound; k, Boltzmann's constant; Q, heat of vaporization, Ek(X) = 

I 

i" #k-2 exp (--x/p); k~0) =pe(To)/(2rmkTo) i/2. 
0 
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